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PURPOSE: Prenatal alcohol exposure (PAE) is a leading cause of persistent 
neurodevelopmental disability, with additional adverse consequences to the offspring’s 
growth, metabolism, cardiovascular health, and immunity, among others. Alcohol 
disrupts offspring development through myriad mechanisms, many of which involve 
direct interactions between alcohol and the embryo and fetus (i.e., the conceptus). This 
limited narrative review instead focuses on mechanisms that are exogenous to the fetus. 
Many of these are relatively unexplored and are also mechanistically interrelated. Thus, 
they represent novel opportunities for the design of interventions that ameliorate 
alcohol-related pathologies. 
SEARCH METHODS: Literature from 2020 to October 2024 was searched using the 
terms “fetal alcohol spectrum disorder”[MeSH] OR “fetal alcohol”[Ti/Ab] with the filter 
“review.” These reviews were inspected to extract nonfetal mechanisms of alcohol. 
Literature from 2000 to October 2024 was then searched in PubMed, Embase, and 
Google Scholar for seven mechanisms, using the search terms “fetal alcohol spectrum 
disorder OR fetal alcohol” AND one of the following: “placenta,” “paternal,” “metabolism 
OR insulin OR amino acid,” “inflammation OR neuroinflammation OR cytokine,” 
“epigenetic,” “iron OR iron deficiency OR anemia,” “microbiome.” Only primary research 
articles, both clinical and preclinical, were included. 
SEARCH RESULTS: The literature scan identified seven mechanisms for which targeted 
literature searches were conducted. These searches yielded relevant studies that 
explored mechanisms involving the microbiome (n = 5 studies), inflammation (n = 72 
studies), epigenetics (n = 30 studies), paternal alcohol exposure (n = 34 studies), 
placenta (n = 53 studies), metabolism (n = 37 studies), and functional iron deficiency 
(n = 23 studies). 
DISCUSSION AND CONCLUSIONS: Exogenous mechanisms of alcohol’s teratogenicity 
are intertwined. Alcohol remodels the maternal enteric microbiome, with potential 
consequences to fetal immune function, nutrient availability, and brain development. 
Microbial endotoxins may further magnify alcohol’s proinflammatory actions. This 
inflammation might also drive a fetal anemia associated with PAE. Alcohol alters 
maternal and fetal metabolism and could limit fetal nutrient availability. This altered 
metabolism could also reprogram placental and fetal epigenetics, as could paternal 
exposure to alcohol. Both epigenetic effects and inflammation can impair placental 
function and modulate the placenta–brain axis that modulates brain development. 
The review discusses limitations in the current understanding of these mechanisms 
and highlights future research avenues that would provide clarity and inform future 
interventions. 
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Introduction 

Prenatal alcohol exposure (PAE) is the leading known cause of 

preventable neurodevelopmental disability. The clinical 

manifestations of PAE, fetal alcohol spectrum disorders 

(FASD), are primarily characterized by cognitive and 

behavioral deficits, but also feature craniofacial anomalies; 

growth deficits; and metabolic, endocrine, immune, 

musculoskeletal, and cardiovascular disorders that persist 

through the life span.1,2 In the United States, 1% to 5% of first 

graders meet the diagnostic criteria for FASD.3 This aligns 

with the rates of gestational alcohol exposure, with 14% of 

pregnant women self-reporting drinking and 5% reporting 

binge drinking (defined as four or more drinks on one 

occasion) in the prior 30 days.4 These rates have not declined 

despite widespread efforts at prevention.4 Thus, there is high 

interest in gestational and postnatal interventions that 

attenuate or even prevent alcohol’s damage. 

The design and application of interventions are informed 

by the identification of the underlying mechanisms by which 

alcohol (i.e., ethanol) induces its pathologies. Alcohol’s 

pathology originates from two distinct metabolic and 

pharmacological mechanisms. In the first, alcohol oxidation 

disrupts metabolic processes within organs that catabolize 

alcohol, including the liver, enterocytes, astrocytes, and other 

cell lineages.5 These disruptions further affect other organs 

via secondary metabolites (e.g., acetaldehyde, acetate, 

ketones)6 and spill-over physiological consequences, such as 

altered lipid metabolism.7,8 Alcohol’s pharmacological 

mechanisms are also well understood. Although alcohol was 

originally posited to have membrane dissolution properties,9 

molecular-level studies revealed saturable effects 

representing specific alcohol–protein interactions. Although 

there is no single alcohol receptor, protein structural studies 

revealed that alcohol physically interacts with hydrophilic 

regions or “pockets” within select proteins.10,11 These 

interactions induce conformational changes within the 

protein that alter its activity. How any given protein responds 

to alcohol binding must be defined experimentally. For some 

proteins, alcohol binding increases their activity by prolonging 

interactions with ligands or partnering proteins. For other 

proteins, alcohol reduces their activity by blunting those 

interactions.10,11 These binding pockets can be mapped using 

longer-chain alcohols (i.e., the Richardson effect9), and for 

each protein there is a size cut-off beyond which larger 

alcohols cannot bind and modulate protein activity. Known 

target proteins that have developmental relevance include 

receptors for gamma-aminobutyric acid, glycine, serotonin, 

and N-methyl-D-aspartate (NMDA); the inwardly rectifying  

 

KEY TAKEAWAYS 

• Alcohol targets not just the embryo and fetus (i.e., the 

conceptus) but also the mother, biological father, placenta, 

and maternal microbiome to further disrupt embryo–fetal 

development. 

• Alcohol reprograms the maternal enteric microbiota and 

causes persistent alterations in the offspring’s microbiota, 

with potentially adverse consequences for the offspring’s 

immune system, gut mucosa, and behavior. 

• Circulating endotoxins from the mother’s enteric microbiota 

may contribute to the inflammation associated with 

prenatal alcohol exposure and to disturbances in maternal 

nutrition and fetal immunity. 

• Alcohol-mediated reprogramming of the placental and fetal 

epigenome may contribute to placental dysfunctions and 

fetal growth reductions.  

• Paternal alcohol consumption may alter the epigenetic 

signals delivered by the sperm to further influence fetal and 

placental development, perhaps in a sex-specific manner. 

• Disruptions of the placenta-brain axis, including reductions 

in placental growth factor, may contribute to the vascular, 

structural, and functional deficits of the developing brain. 

• Alterations of maternal metabolism, including a failure to 

acquire gestational insulin resistance, limit fetal glucose 

availability and further contribute to fetal growth deficits. 

• Prenatal alcohol exposure and its associated inflammation 

may cause a fetal anemia that combined with vascular 

deficits could drive a fetal hypoxia that furthers limit fetal 

growth and development. 

potassium channel Kir2.1; the L1 cell adhesion molecule; and  

G-protein signaling.10-14 Nearly every tissue and pathway responds 

to alcohol; however, to date too few of these alcohol-binding 

proteins have been identified for further investigation. Application 

of the protein structure modeling program Alpha-Fold to this 

question may facilitate the discovery of novel alcohol targets.15 

A significant challenge for mechanistic studies of PAE is that 

this plethora of targets produces seemingly contradictory effects 

that are a function of dose and duration of exposure, gestational 

stage, cell lineage and differentiation status, and even species. This 

complicates identification of alterations that represent the 

primary mechanisms of action and the most impactful targets for 

intervention. Expanding this complexity are more recent 

demonstrations that PAE interacts not only with the conceptus, 

but also with the mother, biological father, placenta, and maternal 

microbiotas.7,16-18 Moreover, its effects are preconceptual as well 

as gestational.17,18 An additional challenge is that not all responses 

to alcohol are adverse. Some are compensatory and others  
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protective. For example, a protein’s abundance may increase 

to compensate for alcohol’s suppression of its activity, as is 

the case with the NMDA receptor.19 Additionally, the PAE-

induced activation of intracellular protein degradation 

(i.e., autophagy) protects against metabolic stress by 

providing extra nutrients.20 Thus, a mechanism’s relevance is 

ultimately defined through the testing of a targeted and 

specific intervention that prevents the broadest range of 

alcohol’s downstream consequences, especially in response to 

a single acute exposure. A caveat here is that some 

interventions do not directly normalize an underlying 

pathology but instead induce compensatory processes that 

facilitate recovery. Because most mechanistic studies are 

performed in nonhuman models, demonstrations that a 

mechanism is conserved across multiple species and taxa 

endorses its relevance for human development. 

Despite these challenges, an extensive literature documents 

numerous mechanisms by which PAE directly interacts with the 

conceptus to alter its development. Many of these involve 

alcohol’s pharmacological actions upon cellular processes 

(see Figure 1). 

• Dysregulation of growth factor signals—such as target of 

rapamycin complex 1 (TORC1), insulin-like growth factor, 

and hedgehog—suppresses anabolic processes, including 

proliferation and ribosome biogenesis and initiate  

apoptosis.21-25 

• Suppression of mitochondrial oxidative processes reduces energy 

generation and, when extended, increases the production of free 

radicals that initiate oxidative stress.26-28 

• Alterations occur in the neuroendocrine and hypothalamic-

pituitary-adrenal axis.29,30 

 

Figure 1. Summary of key mechanisms that underlie alcohol’s teratogenicity, both intrinsic and extrinsic to the conceptus. Mechanisms that are external 

to the conceptus are presented in the orange box and are the focus of this review. Figure generated in BioRender. Note: ROS, reactive oxygen species. 
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• Reduced intake and/or utilization of micronutrients, 

including choline, folate, iron, retinoids, and zinc, causes 

maternal and fetal deficiencies.31-34 

• Genetic polymorphisms modulate alcohol metabolism and 

fetal vulnerability to alcohol’s teratogenicity.35,36 

• Generation of microRNAs and other noncoding RNAs that 

circulate in the mother and fetus modulates cellular 

activity.37,38 

• Disruptions occur in the neurotransmitter systems 

required for synaptic formation, reinforcement, and 

plasticity, as well as for subpopulation expansion and 

organization within the brain.39-42 

• Alterations in cytoskeletal and cell adhesion interactions 

disrupt cell migration, axonal pathfinding, and 

synaptogenesis.43,44 

• Activation of intracellular calcium transients activates or 

suppresses downstream signaling processes, as shown for 

neural crest and trophoblasts.14,45 

A discussion of all these mechanisms is beyond the scope of 

this review. Instead, the review focuses on a neglected aspect 

of alcohol’s actions—namely, its impact on those processes 

that are external to the conceptus and yet make important 

contributions to its development. These external forces 

include the microbiome, inflammation, epigenetics, 

paternal alcohol exposure, placenta, maternal metabolism, 

and functional iron deficiency. For several of these 

(i.e., microbiome, metabolism) their contributions to the 

nonpregnancy state are well understood; however, this 

knowledge has yet to be widely applied to PAE. The review 

also highlights limitations in current understanding of those 

mechanisms and areas for future research opportunities. 

It also explores how these mechanisms are interwoven and thus 

represent new avenues for potential interventions. The goal is to 

bring renewed attention to these mechanisms and expand 

understanding of alcohol’s teratogenicity. 

Search Methods and Results 

Literature from 2020 to October 2024 was searched using the 

terms “fetal alcohol spectrum disorder[MeSH] OR fetal 

alcohol[Ti/Ab]” with the filter “review.” These review articles were 

then inspected to extract nonfetal mechanisms of alcohol’s 

teratogenicity. Using this extracted list, three databases—

PubMed, Embase, and Google Scholar—were searched to identify 

relevant primary literature. Search dates spanned the prior 

quarter-century (2000 to October 2024) and were performed in 

October 2024; initial searches retrieving fewer than 40 articles 

were expanded to the database’s beginning (1981). Separate 

searches were conducted for each mechanism. Search terms were 

“fetal alcohol spectrum disorder[MeSH] OR fetal alcohol[Ti/Ab]” 

AND one of the following: “microbiome,” “inflammation OR 

neuroinflammation OR cytokine,” “epigenetic,” “paternal,” 

“placenta,” “metabolism OR insulin OR amino acid,” and “iron OR 

iron deficiency OR anemia.” Search results did not differ if 

“prenatal” was substituted for “fetal.” Both clinical and preclinical 

studies were included, as were primary research articles and 

reviews. The reference lists from those articles were then 

reviewed to retrieve additional papers not identified in the search. 

From all of these articles, only primary research articles are 

discussed in this review; articles were excluded that were reviews, 

were not in English or did not address PAE (see Table 1). 

Table 1. Search Parameters and Results (Number of Studies) for the Narrative Review 

Search Parameters 
Articles 
Retrieved 

Not 
Relevant 

Selected Included Excluded 

Microbiome [Ti/Ab] (1981–2024) 24 0 24 5 19 

Inflammation[Ti/Ab]) OR neuroinflamm[Ti/Ab] 
OR inflammatory[MeSH] OR cytokine[Ti/Ab] 
(2000–2024) 

129 37 92 72 20 

Epigenetics[Ti/Ab] (2000–2024) 182 104 78 30 48 

Paternal[Ti/Ab] (1981–2024) 54 10 44 34 10 

Placenta[Ti/Ab] (1981–2024) 121 53 68 53 15 

Metabolism[MeSH] OR lipid[Ti/Ab] OR amino 
acid[Ti/Ab] OR insulin[Ti/Ab] (2000–2024) 

378 338 40 37 3 

Iron[Ti/Ab]) OR iron deficiency[Ti/Ab] OR 
anemia[Ti/Ab] (1981–2024) 

41 5 36 23 13 

Note: All searches also included “fetal alcohol spectrum disorder[MeSH] OR fetal alcohol[Ti/Ab].” 
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Results of the Reviewed Studies 

Microbiome and Inflammation 

Microbiome contributions to the effects of PAE 
The microbiota comprises the bacteria, archaea, prokaryotes, 

viruses, and phages present on every internal and external 

body surface. Advances in bulk DNA sequencing have enabled 

the identification of these micro-organisms and their 

significant roles in the host organism’s health.46 The healthy 

gut lumen is anaerobic and predominantly populated by 

microbes requiring such an environment (i.e., obligate 

anaerobes). Heavy alcohol consumption (defined as five or 

more drinks per day or 15 or more drinks per week for men 

and four or more drinks per day or eight or more drinks per 

week for women47) shifts this dynamic to enrich for 

facultative anaerobes that also thrive under aerobic 

conditions.48 This included increases in Proteobacteria and 

reductions in Ruminococcus and Prevotella.48 These population 

shifts reflect changes in the microbiota’s metabolic profile, 

most notably reducing the production of short-chain fatty 

acids (SCFAs), such as acetate and butyrate, that support the 

enteric immune system, strengthen the intestinal barrier, and 

suppress the growth of pathogens, such as Clostridioides 
difficile.49 Alcohol exposure, even from a single binge event, 

also enhances gut permeability, which enables endotoxins 

that are derived from the resident gram-negative bacteria 

(i.e., Salmonella, Escherichia coli) to enter the bloodstream.50 

These endotoxins and fragments of microbial DNA drive a 

persistent, systemic inflammation that further contributes to 

alcohol’s pathogenicity.51 

The microbiome also makes important contributions during 

pregnancy. During pregnancy, the mother’s gut microbiota is 

remodeled to enhance nutrient availability and immune 

tolerance and thus support fetal development.52 Maladaptive 

changes to the mother’s microbiota characterize pathological 

conditions, including gestational diabetes, preeclampsia, fetal 

growth restriction, and preterm birth.52 Communication 

between the gut microbiome and the developing fetal brain 

may affect the offspring’s behavior,53 and microbiota-derived 

biosignatures have been reported for neurodevelopmental 

disorders, such as autism and attention deficit disorder.54,55 

The maternal microbiota also shapes the maturation of the 

offspring’s innate (nonspecific) and adaptive (pathogen-

specific) immune systems, whereas its maladaptation 

contributes to immune-related diseases.56,57 How the 

maternal microbiota influences the offspring is incompletely 

understood, but includes indirect effects through microbiota 

interactions with the maternal enteric immune system53-55 

and direct effects through its metabolites that enter the 

maternal–fetal circulation.49,53,54 Additionally, the enteric, 

vaginal, breast, and oral microbiota all seed the infant’s microbiota 

and could be modified by alcohol exposure.52,56,57 

A few limited studies have investigated the impact of PAE on 

the maternal and offspring enteric microbiota; alcohol’s effects on 

microbiota outside of the gut (e.g., vaginal, breast, oral) remain 

unexplored. In preclinical studies, alcohol reduced the overall 

community diversity (beta-diversity) of the mother’s fecal 

microbiome, seen in reduced abundance of Lactobacilli and the 

butyrate producers Ruminococcaceae and Lachnospiraceae.58 

Similar population shifts were described for the nonpregnancy 

state following heavy alcohol consumption48 and were associated 

with metabolic shifts and SCFA losses that could worsen the gut 

barrier and immune function.48 The effects of PAE extended to 

these rat mothers’ offspring, whose fecal microbiota at weaning 

also had an altered community structure compared with 

nonexposed offspring.58 However, these changes were quite 

distinct from their mothers’, possibly reflecting differences in diet, 

gut maturity state, and alcohol exposure. Thus, these PAE 

offspring had reduced abundance of the SCFA producer 

Bifidobacteriaceae,58 reductions in fecal butyrate (but not acetate 

or propionate),59 and expansions of genera within Bacteriodales, 

notably Alistipes and Parabacteroides;58 these changes have been 

linked elsewhere to inflammation and depressive behaviors.53-57 

These changes persisted into adulthood, indicating that PAE’s 

effects on the offspring’s enteric microbiome community structure 

were long lasting.58-60 PAE also reduced fecal community diversity 

when restricted to two binge exposures at late term.61 Adolescent 

offspring again had reduced Bifidobacterium and accompanying 

enrichments in other SCFA producers (Lactobacillus, Blautia, 
Muribaculaceae) that might represent a compensatory response. 

The abundance of these latter two populations was positively 

correlated with performance in the rotarod and elevated plus 

maze tests that assess motor coordination and anxiety-related 

behavior, respectively. Although these findings were obtained in 

rodents, gut physiology is largely conserved in rodents and 

humans.62 Moreover, these microbial populations have conserved 

functions across mammalian species and thus may exert similar 

effects in humans.62 

An alternate approach to interrogate the impact of alcohol-

microbiota interactions is to focus on the metabolites they 

produce. The microbiota has metabolic actions that affect 

maternal and fetal nutrient needs and the abundance of circulating 

metabolites.52-57 Untargeted analyses of the metabolome in a 

mouse model of PAE identified an alcohol-associated microbiota 

biosignature in late-term maternal plasma that was enriched in 

certain organic compounds (i.e., plant phenolics, plant steroids, and 

indoles) and reduced in eight secondary bile acids.63 Many of these 

compounds crossed the placenta to circulate in the fetal brain and 

liver. Plant phenolics and some indoles may have protective 

actions as free radical scavengers and xenobiotic response 

modulators. However, other metabolites, including oxindole, 
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indolepropionate, and 4-ethylphenylsulfate, have been 

implicated in neurological disorders, such as anxiety, 

depression, and autism.55,64 Several of these protective 

phenolics and indoles were reduced in maternal blood taken 

from alcohol-exposed pregnancies, and their abundance 

positively correlated with infant length and head 

circumference.65 

The microbiota’s impact can also be estimated using a 

computational approach that determines the population’s 

composition based on 16S ribosomal RNA (rRNA) sequencing, 

to extrapolate the microbiota genomes and the putative 

biochemical pathways that might be present. This approach 

was used to analyze the fecal microbiome of alcohol-exposed 

rat mothers and suggested potential differences in the organic 

acid and pentose phosphate pathways used to generate 

SCFAs.60 For their offspring, the analyses predicted possible 

differences in cofactor biosynthesis (e.g., thiamine, cobalamin, 

myo-inositol) and carbohydrate metabolism (hemicellulose, 

hexose sugars). A similar extrapolation from a short late-term 

binge exposure highlighted shifts in the pathways involving 

fatty acid and bile acid metabolism within the fecal microbial 

populations of the offspring.61 Reductions in plasma 

secondary bile acids, which are made by the microbiota, 

contributed to the metabolite biosignature of alcohol-

exposed pregnant mice.63 

Although it is tempting to speculate that such microbiota 

changes might contribute to, for example, the chronic 

inflammation, growth deficits, and behavioral and metabolic 

alterations associated with PAE, such conclusions are 

currently based on associations rather than demonstrations 

of causation. An emphasis on direct analyses, such as sampling 

the colon and cecum instead of feces, and sequencing the 

whole genome instead of 16S rRNA, would provide direct 

information on the functional relevance of these microbiota 

changes.66 Metabolomic analysis of the colonic and cecal 

contents would lend functional support, as would direct 

testing of lead metabolite candidates. Conclusive studies on 

microbiota contributions will require germ-free and fixed-

microbiota (gnotobiotic) animals, including the transplant of 

alcohol-adapted microbiomes into both pregnant dams and 

their offspring. However, such work has its own challenges. 

Additional caveats include the influences of litter, cohousing, 

and diet composition.66,67 Nonetheless, carefully designed 

studies will inform the microbiota contributions to the effects 

of PAE as they have done for alcoholic liver disease.51 

Inflammatory contributions to the effects of PAE 
Mechanistically related to alcohol’s impact on the microbiota 

is alcohol’s consistent association with chronic systemic 

and neuronal inflammation in both mother and fetus.68,69 

For example, monocytes from cord blood of alcohol-exposed 

pregnancies are hyperresponsive to agonists of the toll-like 

receptors (TLR2, TLR4) that initiate immune responses to 

circulating microbial endotoxins, and they produced higher levels 

of pro- and anti-inflammatory cytokines.70 Fetal brain tissues from 

elective terminations that had experienced PAE exhibited higher 

expression of cytokines and chemokines, including monocyte 

chemoattractant protein 1 (MCP-1) and tumor necrosis factor 

alpha (TNF-alpha).71 Elevated maternal cytokines were associated 

with worsened neurobehavioral outcomes of infants after 

birth.72,73 Moreover, plasma from infants with PAE was enriched 

in microRNAs that target inflammatory pathways.74 This 

proinflammatory state persisted postnatally and was associated 

with immune impairments, cognitive deficits, and greater risk for 

inflammation-related chronic disease in later life.75-77 

The mechanistic origins of alcohol’s proinflammatory actions 

outside of pregnancy are well understood. Alcohol enhances gut 

permeability by downregulating annexins, adherons, and other 

proteins that form the tight-junctions between the cells lining the 

gut (i.e., intestinal enterocytes and colonocytes).78,79 Loss of this 

barrier permits cell wall fragments from resident Gram-negative 

bacteria to enter the bloodstream, and these endotoxins circulate 

systemically to activate host defenses through TLR and related 

receptors.50 The microbial origin of this inflammation was shown 

by targeted removal of the Gram-negative population using 

bacteriophages; this intervention profoundly mitigated the hepatic 

inflammation of patients with alcohol-associated liver disease.51 

Additionally, alcohol may also activate the innate immune system 

directly by stimulating the rapid translocation and activation of 

TLR2 and TLR4, as shown for microglia and astrocytes.80,81 

It is likely that similar mechanisms contribute to the 

inflammation associated with PAE, given that a single acute 

alcohol exposure could increase circulating endotoxins in the 

mother and placenta, and perhaps in the fetus.50 In a mouse model 

of PAE, microbial metabolites entered the maternal circulation and 

crossed the placenta to enter fetal tissues, including the brain.63 

Direct evidence that this inflammation contributes to the 

pathologies and behavioral deficits of PAE emerged from studies 

of animals lacking key proinflammatory effectors. For example, 

a null-mutation that inactivated the endotoxin receptor TLR4 

abrogated the PAE-induced changes in plasma and brain cytokines, 

microglial activation, and cortical expression of synaptic and 

myelin-related proteins.82,83 It also normalized offspring 

performance in behavioral measures reflecting anxiety, learning 

and memory, and social interactions.82,83 Unexpectedly, the TLR4 

null mutation also normalized neonatal body weight, perhaps 

reflecting the procatabolic effects of inflammation on protein 

metabolism. These data suggest that similar to alcohol-associated 

liver disease, some of the brain- and growth-related pathologies of 

PAE may be mediated by endotoxin and/or TLR4. Studies with 

germ-free animals will be key to test this potential mechanism. 

The maternal gut microbiome makes critical contributions to the 

education and maturation of the fetal immune system,54 and 
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alcohol’s disturbances of the maternal microbiota could also 

mediate persistent alterations in the offspring’s immune 

function. 

Studies in rodents that restricted alcohol exposure to the 

early postnatal period (i.e., the equivalent to third-trimester 

brain development in humans), have suggested that 

inflammatory responses within the offspring also contribute 

to adverse effects of PAE. Coadministration of the 

nonsteroidal anti-inflammatory drug ibuprofen with the 

alcohol exposure attenuated the alcohol-induced 

neuroinflammation and memory deficits,84 whereas loss of 

the chemokine MCP-1 or its receptor (C-C chemokine 

receptor type 2 [CCR2]) attenuated TLR4 activation and 

neuronal apoptosis.85  

However, although anti-inflammatory interventions may 

be efficacious, they might not operate via the proposed 

mechanism. For example, although many compounds have 

purported anti-inflammatory activities, some of these (i.e., 

peroxisome proliferator-activated receptor gamma [PPAR-

gamma] agonists, antibiotics, phytochemicals, antioxidants) 

have pleiotropic actions on multiple physiological processes 

distinct from immune function. For example, PPAR-gamma 

agonists and metformin have potent metabolic actions that 

may separately benefit maternal and fetal development (see 

below), and antibiotics such as minocycline and rifampicin 

profoundly alter the gut microbiota, as can oral 

phytochemicals.86-88 Thus, efforts to clarify the inflammatory 

contributions to FASD would benefit from interventions that 

selectively target immune functions, such as genetic 

knockouts and nonsteroidal anti-inflammatory drugs. 

A second open question is the extent to which maternal 

versus fetal inflammation contributes to alcohol’s pathology. 

Investigations that separately manipulate toll-like or cytokine 

receptors by genetic means in mother or fetus could clarify 

where an intervention is best directed. Similarly, PAE causes 

both systemic and brain-specific inflammation in the offspring, 

and the relationship, if any, between their respective 

responses is unclear. Tissue-specific knockouts of toll-like or 

cytokine/chemokine receptors would again inform their 

contributions. Thus, how alcohol initiates inflammation in the 

maternal–fetal dyad, and the actual mechanisms by which this 

inflammation affects the pregnancy and especially fetal brain 

development, remain elusive but solvable questions. 

Epigenetics, Paternal Effects, and Placental 
Function 

Epigenetics mechanisms underlying effects of PAE 
Similarly intertwined in PAE are the mechanistic 

contributions of epigenetic repatterning, including the 

influences of paternal alcohol exposure and their interactions 

with placental function. Epigenetics refers to mechanisms that 

impose long-term changes in gene expression without altering the 

DNA sequence; they typically come into play as cell fates become 

“locked-in” during development.89 This is achieved through three 

mechanisms: DNA methylation, chromatin silencing via histone 

proteins, and the expression of noncoding RNAs (ncRNA). DNA 

methylation targets select cytosine-guanine nucleotide pairs 

(i.e., MeCpG) within regulatory DNA sequences to silence a gene’s 

expression. Long-term silencing is achieved by wrapping this 

methylated DNA around histone proteins. The addition or removal 

of methyl groups to select lysine groups within the histone 

regulates the degree of DNA wrapping and thus controls the 

gene’s expression. Further fine-tuning comes from the expression 

of antisense ncRNAs that bind mRNAs to prevent their translation. 

Elegant studies have shown that PAE alters ncRNA expression in 

the mother and offspring (for reviews, see Pinson and Miranda,38 

Mahnke et al.,74 and Pinson et al.90). The epigenetic code or imprint 

is erased in the zygote and rewritten thereafter to promote  

in-utero survival in response to stress.89 It also is used to silence 

alleles of either paternal or maternal origin as a mechanism to 

control fetal growth in response to in-utero stress.89 An 

individual’s epigenetic signature is thought to reflect those 

prenatal experiences. The strongest evidence that alcohol impacts 

epigenetic mechanisms affecting the fetus comes from 

demonstrations that heavy alcohol exposure of either mother91,92 

or father16 (see below) even before conception caused growth and 

physiological changes in the offspring akin to those associated with 

PAE. For example, preconceptual maternal alcohol exposure 

caused methylation-mediated silencing of the imprinted Agouti 

viable yellow (A(vy)) locus in mouse offspring.92 Maternal stress, 

which is often concurrent with heavy alcohol use, was shown to be 

an independent influence and synergized with PAE to worsen the 

latter’s effects.93,94 

A large literature has documented many epigenetic responses 

to PAE (see Wallén et al.95 and Gutherz et al.17 for recent reviews). 

Both preclinical and clinical studies found global MeCpG 

differences, with more than 80% reporting hypomethylation with 

PAE.96-99 However, the precise gene targets vary widely, perhaps 

due to differences in dosing and timing of PAE, as well as tissue and 

model studied. The most consistent evidence has emerged from 

studies of the IGF2/H19 locus, which encodes the adjacent genes 

insulin-like growth factor-2 (IGF2) and the ncRNA H19. Under 

normal conditions, the placenta and embryo express the paternal 

allele of IGF2 and maternal allele of H19.100 Both are primary 

effectors of prenatal growth, and methylation of the paternal-

derived alleles maintains their correct parent-of-origin expression 

in a complex regulatory manner.100 PAE was associated with 

hypomethylation of the paternal Igf2 allele in mouse placentae but 

not fetuses,101 perhaps reflecting the placenta’s importance in 

promoting fetal growth. In adult mice with PAE, the maternal allele 

evidenced a hypermethylation suggestive of dysregulated 
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imprinting.102 A trend to hypomethylation of paternal 

IGF2/H19 was also found in buccal swabs from children 

diagnosed with FASD103 and in placentae from alcohol-

exposed pregnancies;104 in the latter study, the level of 

IGF2/H19 hypomethylation weakly correlated with IGF2 

expression and infant head circumference. In another study 

that did not examine the imprinted state of IGF2, placentae 

from alcohol-exposed pregnancies had increases in IGF2 

expression that negatively associated with postnatal infant 

length and weight.105 IGF2/H19 showed a trend for 

hypomethylation in the sperm of men who drank alcohol.106 

However, hypomethylation was not found in binge-exposed 

male mice, nor were the methylation patterns altered in any 

imprinted genes of animals sired by those male mice.107,108 

Other studies of children with a history of PAE reported 

normal methylation at IGF2/H19 but hypomethylation at 

several other genes, including the differentially methylated 

region 1 (KvDMR1) within the potassium voltage-gated 

channel KCNQ1, paternally expressed gene 3 (PEG3), and 

developmental pluripotency associated 4 (DPPA4); this latter 

gene has been implicated in epigenetic silencing and could 

inform a mechanism of alcohol’s action.96,97 However, in all 

these studies the magnitude of alcohol’s effect upon MeCpG 

was quite small (1% to 7%) and almost never achieved 20%. 

Moreover, studies seldom validated the functional 

significance of these methylation differences by showing 

expression-level change for the respective genes. Indeed, 

a recent systematic review concluded that there was 

insufficient evidence associating PAE with global DNA 

methylation changes, hypomethylation at IGF2/H19, or 

altered methylation at other genes.109 This raises the question 

whether these incremental differences in DNA methylation 

are functionally meaningful. 

An alternate mechanism for PAE-associated epigenetic 

changes is alcohol’s ability to alter the epigenetic marks on 

histone proteins and thereby modulate chromatin structure 

and gene expression. This is achieved by histone 

methyltransferase and demethylase enzymes, with the impact 

on expression depending on the specific lysine or arginine 

residues within the histone that are targeted. PAE causes 

both global and gene-specific alterations in histone 

methylation,17,95 although as with DNA methylation, there is 

no single “alcohol response.” The mechanistic evidence 

regarding the role of histone methylation in PAE-associated 

epigenetic changes is stronger than with DNA methylation. 

For example, the histone methyltransferase G9a generates 

the inactivating mark H3K9—that is, it methylates histone H3 

at the lysine residue at position nine (K9) to create H3K9me2, 

which inhibits gene expression. Inhibition of G9a before 

alcohol exposure normalized its histone methyl marks and 

prevented alcohol-mediated cortical neuron apoptosis and 

behavioral deficits.110-112 Alcohol-associated changes in 

chromatin structure were linked also to altered expression of 

developmentally important genes, including early growth response 

protein 1 (Egr1), activity-regulated cytoskeleton-associated 

protein (Arc), and Snail family transcriptional repressor 1 (Snai1), 

as well as the inflammatory genes Tnf, interleukin-6 (Il6), and 

others.113-116 These latter findings suggest that epigenetic shifts 

may reinforce the chronic inflammation associated with PAE. 

Administration of a lysine dimethyltransferase inhibitor before 

alcohol exposure normalized the inactivating marker H3K9me2 in 

fetal cortex and hippocampus and improved behavior outcomes.112 

PAE also slowed histone synthesis and lengthened histone half-

life,117 perhaps reflecting alcohol’s ability to extend the cell cycle 

and reduce proliferation.118  

However, it is not always clear whether such differences 

actually reflect functional mechanisms. In both neural stem cells 

and mouse embryos, alcohol exposure altered histone 

modification, with consistent enrichment of the H3K9me2 mark 

that signified gene silencing; however, these chromatin-level 

changes did not correspond with the actual gene expressions.119-

121 Alcohol’s effects on chromatin structure in these models were 

gene- and dose-specific, bidirectional, and nonlinear. Nonetheless, 

the chromatin structure of five key developmental genes (distal-

less homeobox 2 [Dlx2], homeobox genes A6 und A7 [HoxA6 and 

HoxA7], Msh homeobox 2 [Msx2],and vitamin D receptor [Vdr]) was 

altered in both neural stem cells and the fetal cortex, and these 

changes persisted and stabilized over time.121 These studies again 

highlight the importance of linking descriptions of chromatin 

remodeling to functional demonstrations of altered gene 

expression. Alcohol’s actions may be strongest when the exposure 

aligns with the gene’s window of susceptibility to epigenetic 

remodeling, which is a direct function of the affected cell’s 

pluripotency state and trajectory of differentiation.122   

Also unclear is the mechanism(s) by which PAE alters DNA and 

histone methylation marks. Numerous studies have reported that 

alcohol affected the expression or activity of epigenetic effectors, 

including the DNA methyltransferases (DNMT1-4) that create 

MeCpG, the methyl-CpG binding protein-2 (MECP2) that 

modulates chromatin remodeling, and the numerous histone 

methylases and demethylases that govern histone–DNA 

interactions.121,123-125 However, these alcohol-associated 

differences varied with sex, tissue, and exposure model, and 

again there was no single “alcohol response.” Moreover, these 

expression-level differences did not always correlate with actual 

enzyme activities.119-121 One study found persistent changes in the 

chromatin structure of genes that mediate chromatin remodeling, 

suggesting a mechanism by which alcohol could have a lasting 

impact on these processes.120 

Cellular metabolism also strongly affects the epigenetic 

methylation code. DNA and histone methyltransferases obtain their 

methyl groups from the metabolite S-adenosylmethionine (SAM) 
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and generate S-adenosylhomocysteine (SAH) as an end 

product. SAH is a potent inhibitor of these methyltransferases, 

and the ratio of SAM/SAH rather than the absolute SAM 

content dictates the enzymes’ activity.126 Thus, both SAM and 

SAH need to be measured because values for just SAM are not 

interpretable. SAM is regenerated from SAH through addition 

of methyl groups provided by choline or methionine, which may 

partly explain how supplemental choline attenuates alcohol’s 

neurobehavioral deficits.32 It is unknown how alcohol affects 

methyl group availability; a recent study suggested that alcohol 

redirects choline fates away from SAM.127 PAE may also limit 

the availability of another crucial methyl donor, folate,33 and 

providing folate may further benefit choline interventions.128 

Given the current paucity of mechanistic insight into the 

alcohol-induced epigenetic differences, their immediate value 

may be as diagnostic biosignatures for PAE, assuming that the 

changes persist postnatally. Lussier et al. identified 299 

methylated cytosine (MeC) sites in weanling rats that were 

shared between blood cells and the hippocampus.129 They 

also identified a MeCpG profile within the buccal cells of 

people with FASD.130 When tested on an independent cohort, 

25% (161 of 648) of these sites again distinguished individuals 

with FASD from controls and did not predict autism diagnosis, 

sex, age, or ethnicity, suggesting their potential as a diagnostic 

biomarker for FASD. Analyses of whole blood from individuals 

with severe FASD identified six genes with both altered 

methylation and expression.131 In contrast, no PAE-specific 

MeCpGs could be identified within the placentae or buccal 

swabs from offspring who experienced binge-level PAE in an 

Australian cohort,132 nor in placentae, buccal swabs, and 

umbilical leukocytes in a South African cohort.97 Given the 

millions of MeCpG sites within the human epigenome, future 

studies may benefit from machine learning approaches plus a 

consolidation of smaller datasets to facilitate biosignature 

discovery.133 

Mechanisms of paternal preconceptual alcohol 
exposure 
Alcohol’s epigenetic actions likely also explain how paternal 

alcohol consumption impacts the conceptus. As reviewed 

elsewhere,134 paternal drinking is associated with 

spontaneous abortion;135,136 reduced birth weight and 

premature birth;137 and increased risk for cardiac defects,138 

microencephaly,139 and birth defects generally.140 However, 

because drinking by a male partner facilitates maternal 

drinking,134 it is difficult to disentangle alcohol’s direct effects 

from the socioeconomic and familial influences that surround 

drinking.134,141,142 

Animal studies have confirmed these paternal influences 

and have demonstrated reduced fetal body weight, brain 

weights, and placental efficiency;107,143,144 dose-dependent 

craniofacial asymmetries;145,146 and hepatic fibrosis.147 

Paternal alcohol consumption also elevated markers of cellular 

senescence,148 a pathological state in which the cell loses its 

proliferative ability and releases proinflammatory signals.149 Some 

of these paternal effects were sex-dimorphic, with male offspring 

exhibiting reduced fat mass, lower fasting glucose and insulin, and 

better glucose tolerance in response to high-fat diets.108,147,148 

These metabolic changes might reflect elevated hepatic activity of 

the lipogenic transcription factor LXR-alpha.147 Behaviorally, 

paternal exposure was associated with increased motor activity, 

worsened balance and coordination, and altered alcohol-related 

behaviors in the offspring.150-152 

Mechanisms by which the sperm could impart its epigenetic 

influences include DNA damage, DNA methylation, methyl-

histone modifications, and altered expression of ncRNAs.16 Heavy 

alcohol consumption correlated with the hypomethylation of 

sperm DNA at two distinct loci, the aforementioned H19, and the 

intergenic differentially methylated region (IG-DMR) that controls 

paternal allele expression of genes, including iodothyronine 

deiodinase type-III (DIO3) and delta-like homolog 1 (DLK1).106 

However, in three separate mouse studies, the alcohol-associated 

sperm methylation profiles did not correlate with the offsprings’ 

methylation profiles or expression of paternal-imprinted 

genes.107,108,153 Indeed, gamete methylation patterns are typically 

rewritten postimplantation and presumably this would limit such 

persistence.89  

Paternal alcohol exposure was instead associated with shifts in 

the activating histone H3K4me3 methylation mark in mouse 

sperm, and these correlated with placental localization of the 

CCCTC-binding factor (CTCF) protein that binds chromatin to 

regulate DNA structure and thereby gene expression.154 However, 

sperm delivers not just DNA but ncRNAs, and chronic alcohol 

exposure has been shown to alter the ncRNA composition within 

sperm, including changes in tRNA-derived ncRNAs, mitochondrial 

ncRNAs, and microRNAs (miRNAs).155,156 This includes selective 

changes in miRNAs miR-125a, miR-196a, and miR-10a/b that 

regulate the expression of ligand-dependent nuclear receptor 

corepressor (Lcor), which modulates steroid receptor interactions, 

and in miR-30a, miR-142, and miR-196a that regulate expression 

of nuclear factor erythroid 2-related factor 2 (NRF2), which 

controls cellular antioxidant responses.155-157 Some miRNA 

changes persisted for 30 days after alcohol exposure.157 Whether 

these ncRNA changes produce expression-level differences in the 

gamete, early embryo, or yolk sac warrants further investigation. 

In summary, paternal alcohol exposure influences the 

conceptus, perhaps via ncRNAs and histone dysregulation, and this 

merits further investigation. Given that both biological parents 

may have heavy alcohol consumption, future work also may 

consider how their respective exposures interact or even 

synergize to shape fetal and placental development. 
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Placenta dysfunction associated with PAE 
The placenta is more than a passive transporter of nutrients 

and gasses; it actively communicates with mother and fetus 

via hormones to coordinate their respective growth and 

adjusts those signals in response to stressors and in a sex-

specific manner.158 Its development and activity are also 

governed by paternal-derived epigenetic influences that 

further affect fetal growth.16 The placenta arises from an 

embryo-derived structure, the visceral yolk sac; following 

implantation, it rapidly grows and differentiates to support 

the pregnancy. Alcohol adversely affects all these processes 

to increase the risk for intrauterine growth restriction, 

preeclampsia, and premature birth. 

Whereas heavy maternal binge drinking, defined as eight 

standard drinks on 2 to 3 days per week, has been shown to 

reduce both placental and fetal growth,159 lower-exposure 

levels were associated with normal or even enlarged 

placentae relative to fetal weight.160 This adaptive response 

affected placental efficiency in a sex-dependent manner to 

reduce placental weight in females but not males.160 A similar 

J-shaped growth response also was observed in response to 

paternal alcohol exposure, suggesting an epigenetic 

mechanism that shapes fetal growth as further discussed 

below.161 Further supporting a role for epigenetic 

mechanisms in mediating alcohol’s effects were 

demonstrations that supplementation of the micronutrient 

choline, a methyl group donor, improved fetal growth and 

placental efficiency after PAE.162,163 These epigenetic 

mechanisms also can redirect placental function in response 

to nonalcohol stressors164 and could contribute to the effects 

of both pre- and postconceptual alcohol exposure and to its 

sex-specific effects. 

Alcohol also suppressed vascularization of the visceral yolk 

sac165 and placenta.166 An embryo-derived cell lineage called 

trophoblasts mediates implantation into the uterine wall, and 

alcohol impaired trophoblast migration, invasion, and 

expansion, in part by invoking a temporary increase in 

intracellular calcium concentrations (calcium transient) that 

initiated their apoptosis.167,168 Gestational alcohol use was 

also associated with elevated blood levels of maternal-

derived miRNAs that inhibit the genes that initiate 

trophoblast invasion, a process called the epithelial-to-

mesenchymal transition (EMT). The addition of this miRNA 

“cocktail” was sufficient to inhibit the EMT and proliferative 

expansion of cultured trophoblasts and reduced placental and 

fetal growth in vivo.90,169 Alcohol-mediated reductions in IGF1 

signaling and activity may further limit placenta 

formation.170,171 

Alcohol-exposed placentae exhibit morphological and 

vascularity abnormalities, including uteroplacental 

malperfusion (i.e., inadequate blood supply to the uterus and 

placenta), impaired vascular remodeling, and chorangiosis (i.e., an 

excess of capillaries in the placenta that may indicate 

hypoxia).170,172,173 This is accompanied by vascular dysfunction 

with an exaggerated vasoconstriction response to hormones, such 

as angiotensin II.174-176 The subsequent reduction of placental 

blood flow limits the transport of nutrients, such as glucose,177,178 

amino acids179 and folate,180 and causes fetal hypoxia.175,176,181 

Reductions in the vasodilator endothelial nitric oxide synthase 

(eNOS)176 and increased reactivity to the vasoconstrictive 

hormone thromboxane B2182 may underlie this vasoconstriction; 

supplementation with phosphatidic acid normalizes eNOS and 

vascular tone in the uterine artery.183 Preclinical models revealed 

that alcohol suppressed the expression of key genes that promote 

blood vessel formation (angiogenesis), including vascular 

endothelial growth factor (VEGF) and its receptor, kinase insert 

domain receptor (KDR).166,184 Similar findings were reported for 

placentae from women who drank heavily in pregnancy, with 

dysregulated expression of angiogenic genes, including annexin-

A4, KDR, scavenger receptor class B type 1 (SCARB1), ETS proto-

oncogene 1 (ETS1), and EGL nine homolog 1 (EGLN1).185,186 

Additionally, recent work has identified a placenta–brain axis in 

which placental growth factor (PlGF) was released into the fetal 

circulation to enhance VEGF activity and stimulate the brain’s 

vascular development.187 PAE reduced the placental production of 

both PlGF188 and a second interacting protein, CD146.189 

Moreover, placental knockdown of either PlGF or CD146 caused 

vascular deficits in the brain cortex that were similar to those from 

PAE.190 Conversely, PlGF overexpression attenuated both the 

placental and cortical derangements due to PAE, suggesting it may 

be a candidate for intervention.188,191 Comparative genomics of 

the fetal placenta and cortex with and without PAE identified an 

expression signature that featured genes related to angiogenesis 

and vascular development, and both organs exhibited a specific 

loss of angiotensin protein but not its receptors.191 This altered 

cortical vascularity persists into adulthood and may exacerbate 

responses to stroke in later life.192 There is interest in whether 

placental vascularity may be a surrogate marker for PAE (for 

additional discussions of PAE and placental vascularity, see 

Gualdoni et al.166). 

Alcohol’s proinflammatory actions also extend to the placenta, 

which exhibits a proinflammatory gene expression profile and 

potential enrichments in Hofbauer cells, which are fetal-derived 

macrophages that may recruit maternal T cells to the chorionic 

villi.193,194 The gene expression profile included elevations in 

cytokines (interleukin [IL] 1-alpha, IL-1-beta, IL-6, interferon 

gamma [IFN-gamma], TNF-alpha, TNF superfamily member 4 

[TNFsf4]) and chemokine mediators (C-C motif chemokine ligand 

20 [CCL20], CCR2, CCR1).185,194-196 In other instances, chronic 

placental inflammation was linked to villus destruction, reduced 

nutrient transfer (especially for iron, see below), fetal growth 

restriction, neurocognitive deficits, and chronic disease in later 
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life.197,198 The consequences of this placental inflammation for 

placental dysfunction in PAE are not well studied and merit 

further investigation. Although the placenta itself is likely 

sterile,199 alcohol might compromise its impermeability to 

pathogens and endotoxins to promote a chronic 

proinflammatory state. 

In summary, renewed attention to alcohol’s impact on the 

placenta has created a strong foundation for future 

investigations. Additional opportunities include alcohol’s 

impact on placental metabolic and transport roles that 

support the fetus. Nutrients do not simply “flow” from mother 

to fetus, and their bidirectional movement is tightly regulated. 

The placenta achieves this via a metabolic governance that is 

distinct from that of the mother and fetus.200 Alcohol’s impact 

here is essentially unknown. 

Metabolic Derangements and Functional Iron 
Deficiency 

Metabolic mechanisms underlying the effects of PAE 
Alcohol has multiple metabolic effects as a nutrient-poor 

caloric source that is converted to acetaldehyde, acetate, 

ketones, fats, and ultimately CO2. Its metabolic consequences 

are well understood in the nonpregnancy state and include 

hepatic steatosis and peripheral lipid mobilization, skeletal 

muscle atrophy (sarcopenia), greater insulin resistance, 

ketosis, sharply elevated ratios of reduced to oxidized forms 

of nicotinamide adenine dinucleotide (NADH/NAD), 

mitochondrial dysfunction, and the potential displacement of 

essential nutrients.7,201 Limited attention has been paid to 

these alcohol-responsive processes in pregnancy, during 

which the mother undergoes extensive metabolic remodeling 

to support the fetus’s extraordinary anabolic state. 

Disruptions in maternal metabolism have cascading fetal 

consequences, including preeclampsia, gestational diabetes, 

and fetal growth restriction.158,202 Recent preclinical evidence 

has suggested similar disruptions in alcohol-exposed 

pregnancies.177,178 However, it should be cautioned that some 

of these metabolic changes may be adaptive rather than 

pathological. 

Acute alcohol exposure has been shown to reduce 

maternal plasma glucose.177,178,203,204 Untargeted 

metabolomics of maternal mouse liver revealed that this is 

accompanied by reductions in key glycolytic intermediates 

but not tricarboxylic acid (TCA) cycle intermediates, 

suggesting reduced glycolytic flux.204 The fetal brains and 

placentae from the alcohol-exposed pregnancies also had 

reduced glucose levels, whereas the fetal livers made a 

compensatory attempt to increase glucose by activating 

gluconeogenesis and increasing expression of key enzymes 

glucose-6-phosphatase and phosphoenolpyruvate 

carboxykinase (PEPCK).177 Fetal urea and amino acid catabolites 

also rose as animo acids were diverted into gluconeogenesis at the 

expense of protein synthesis, and these elevated catabolites and 

gluconeogenic enzymes negatively correlated with fetal 

growth.177,204 Potentially exacerbating these glucose losses was an 

increased glycogen deposition within PAE placentae163 and a 

diversion of placental glucose into pentose phosphate pathway 

intermediates and glucosamine synthesis.178 

During a healthy pregnancy, the mother acquires a partial 

insulin resistance that makes more plasma glucose available for 

placental and fetal use while the maternal metabolism emphasizes 

lipids as a major fuel.202 PAE prevented this adaptation, and 

alcohol-exposed mouse dams retained their insulin sensitivity as 

reflected in their rapid clearance of plasma glucose following 

administration of insulin or a glucose bolus.177 However, they also 

exhibited normal pancreatic insulin release and blunted hepatic 

insulin signaling. Thus, the underlying mechanism preventing their 

acquisition of insulin resistance remains unclear. 

Insight may emerge from preclinical studies in which 

coadministration of the TORC1 inhibitor rapamycin and alcohol 

attenuated the offspring’s learning and memory deficits;205 

TORC1 is a primary effector of cellular anabolism. This study 

targeted neonatal pups; therefore, whether maternal metabolism 

might also benefit is unknown. Although oxidative stress measures 

were also reduced in the pups, TORC1 inhibition has diverse 

impacts and most notably the activation of adenosine 

monophosphate-activated protein kinase (AMPK), which 

promotes adaptive metabolic changes in response to stress.206 

Thus, it is unclear how rapamycin countered alcohol’s actions. 

With respect to lipids, both clinical and preclinical studies have 

documented altered lipid profiles in alcohol-exposed mothers and 

fetuses, with consistent elevations in free fatty acids, glycerides, 

and phospholipids derived from palmitate (C16:0), stearate 

(C18:0), and linoleate (C18:2).61,65,204,207 Circulating very low 

density and low density lipoproteins (VLDL and LDL) were reduced 

during pregnancy in women who drank heavily208 as were 

individual phospholipids and triglycerides in a rat PAE model.207 

These changes likely reflect alcohol’s mobilization of free fatty 

acids from adipocyte stores, reduced hepatic VLDL synthesis, and 

increased hepatic lipid synthesis, elongation, and desaturation.201 

Maternal plasma lipids rise during a healthy pregnancy, which 

provides the mother with an alternate energy source and spares 

her glucose for fetal use.158 The alcohol-driven reductions in 

plasma lipoproteins could limit maternal energy availability and 

might be driven by the same signals that blunt the mother’s 

gestational insulin resistance. Potentially supporting this is the 

recent demonstration that maternal supplementation with 

phosphoglycerate normalized fetal growth in a rat PAE model.183 

Although the authors posited that phosphoglycerate acts by 

enhancing uterine artery relaxation, the compound is also the 

backbone on which phospholipids are built and could be limiting 
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in a highly lipogenic environment. Another study in a rat PAE 

model reported that the postnatal brain might accumulate 

lipid droplets,61 and this could be maladaptive or perhaps 

adaptive to prior reductions in fetal brain glucose.177 

Amino acid pools are tightly regulated and alcohol has 

different effects on these, depending on the compartment 

(maternal versus fetal), tissue, and exposure model.203,204,209 

For example, chronic alcohol use reduced essential amino acid 

levels in maternal liver204 but elevated most amino acids in 

fetal brain hippocampus and cerebellum.210 Untargeted 

metabolomics studies have demonstrated that elevations 

in amino acid catabolites can distinguish alcohol-exposed 

pregnancies. For example, a study in pregnant women 

(18.5 ± 6.5 weeks gestation) who drank heavily found 

elevated blood glutamate and glycine levels, both of which 

are critical for nucleoside synthesis; blood glutamate was 

negatively associated with infant length and weight, and 

glycine was negatively associated with infant weight and head 

circumference.65 Similarly, in a mouse model of PAE, amino 

acid catabolites, including urea, kynurenate, and citrulline, 

were elevated and negatively correlated with fetal brain and 

body weight.204 The rise in these catabolites may reflect the 

aforementioned fetal need to generate glucose via 

gluconeogenesis. Supporting this is the alleviation of fetal 

growth restriction by glutamine infusion in an ovine PAE 

model.203,211 Glutamine, in addition to protein synthesis, also 

supplies carbon skeletons for the TCA cycle and nitrogen for 

nucleoside synthesis. 

In summary, alcohol’s metabolic effects are likely to be a 

major driver of PAE-associated pathologies during the heavily 

anabolic pregnancy. Moreover, many at-risk pregnancies 

involve women who exhibited heavy drinking patterns before 

pregnancy, and it is unknown how the resulting metabolic 

changes before pregnancy affect the mother’s ability to adapt 

to and support a healthy pregnancy. The extrapolation of 

alcohol’s known impacts in a nonpregnant state to PAE should 

greatly enhance understanding of the mechanisms underlying 

PAE’s effects on the fetus and promote the design of 

macronutrient and/or pharmacological interventions that 

could address those metabolic changes. Additionally, PAE-

related metabolic changes may contribute to alcohol’s 

epigenetic reprogramming, both by creating maternal and 

fetal nutrient deficiencies that induce fetal stress, and by 

altering methyl or acetyl availability as discussed above. It is 

worth noting that alcohol is a molar-level source of acetate 

groups (one U.S. standard drink of 14 g ethanol contains 

0.3 mol acetate) and may modulate the availability of acetate 

groups used for histone modification. 

Functional iron deficiency and the anemia associated 
with PAE 
Intertwined with many of the mechanisms contributing to the 

effects of PAE—impact on microbiome, inflammation, placental 

function, and metabolism—is alcohol’s impairment of the 

erythrocytic and vascular expansion necessary to support fetal 

growth. Formation of red blood cells (erythropoiesis) originates in 

the yolk sac, then shifts to the nascent liver for much of 

development, before moving to bone marrow near term.212 

Growing evidence indicates that PAE is associated with fetal 

anemia,213,214 which would be one of its most impactful 

mechanisms to impair fetal development. Fetal anemia is 

associated with lasting cognitive and behavioral impairments, not 

just due to hypoxia, but also due to the loss of iron that is critical 

for healthy brain development.215 Iron is essential for myelination 

and adenosine triphosphate generation and catalyzes the 

synthesis and disposal of neuroactive amines.215 Rodent studies 

revealed that PAE caused fetal anemia characterized by red blood 

cells with normal size but with significant declines in red cell 

counts, hematocrit, and hemoglobin (normocytic, hypochromic 

anemia).213,216,217 A fourfold increase in iron-deficient anemia and 

reduced hemoglobin was also documented in infants born to 

mothers who reported binge drinking in a South African 

cohort.214,218 The infants’ risk for iron-deficient anemia was even 

greater in childhood and was negatively associated with infant 

growth.214,218,219 This fetal “anemia of PAE” can occur even when 

the mother has adequate iron levels and is not anemic; thus, her 

clinical indicators mask the fetus’s anemia.213,218,220 Fetal 

outcomes are further worsened when the mother herself has iron 

deficiency, and the combination of iron deficiency and PAE further 

reduces placental efficiency and fetal and postnatal growth; 

worsens inflammation; and synergizes to reduce learning and 

memory.195,221-224 The extent and severity of this fetal anemia 

associated with PAE is unknown, even though iron deficiency is the 

most common single-nutrient deficiency in pregnancy.225 

It has become clear that this fetal anemia arises, in part, because 

PAE creates a functional iron deficiency in the fetus—that is, 

maternal iron intake is adequate, but this iron is poorly utilized.226 

Preclinical studies found that PAE reduced and dysregulated iron 

levels in fetal brain213,227,228 and plasma229 because it sequesters 

iron within fetal hepatic stores (which with PAE contain 123% of 

control iron levels), making it inaccessible for other organs, 

including the erythrocytes and their precursors as well as the 

brain.213 A similar iron sequestration has been suggested by the 

elevated levels of ferritin (a protein that sequesters iron) and 

reduced hemoglobin:ferritin ratios seen in pregnant women who 

drank heavily and their infants.220,230 Functional iron deficiency 

was further supported by the red cells’ normocytic, hypochromic 

appearance and the increased numbers of immature red cells in 

the fetal liver sinusoids.216 
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A common cause of functional iron deficiency is chronic 

inflammation, in which cytokines stimulate the hepatic 

production of hepcidin, a circulating peptide that inhibits iron 

absorption and promotes iron storage.231 Hepcidin levels 

were elevated in pregnant women who reported binge 

drinking, and these elevations correlated with infant risk for 

iron deficiency anemia.220 Preclinical models of PAE showed 

that alcohol stimulated hepcidin production through the  

IL6-mediated activation of signal transducer and activator of 

transcription 3 (Stat3) signaling.232 The proinflammatory state 

of the alcohol-exposed placenta186,194,195 may be an additional 

driver of the fetus’s functional iron deficiency as it 

coordinates maternal–fetal iron transfer233 and promotes 

fetal angiogenesis and erythropoiesis,187 signals that are also 

disrupted by PAE (see above). This inflammation-stimulated 

elevation of hepcidin may explain why the fetus’s anemic state 

is not normalized despite attempts to elevate these  

pro-angiogenic and pro-hematopoietic signals.186,194,217 

Provision of supplemental iron during PAE reversed both 

elevated hepcidin and anemia, suggesting that PAE increased 

fetal iron requirements.216,234 This mechanistic pathway may 

also explain the ability of anti-inflammatories to attenuate 

alcohol-induced fetal damage, as these agents would reduce 

the cytokines that stimulate hepcidin synthesis and limit iron 

utilization.69 An important question is whether mitigating 

inflammation during PAE would also mitigate the fetal anemia, 

as has been shown for the nonpregnancy state.235 Similarly, 

erythropoietin agonists (e.g., roxadustat) are efficacious in 

treating the anemia of chronic kidney disease and might have 

merit as an intervention in PAE.236 

PAE may also directly suppress erythropoiesis. High rates 

of erythropoiesis are required to sustain the fetus’s rapid 

growth. However, red blood cell proliferation places a high 

demand on the generation of the ribosomes necessary to 

support that growth, such that genetic deficits in ribosome 

biogenesis are typified by an anemia that is refractory to 

supplemental iron or folate.237 Alcohol directly impairs 

ribosome biogenesis in highly proliferative cells, such as 

neural stem cells and neural crest.238,239 Alcohol also 

suppresses the anabolic effector TORC1, which otherwise 

induces ribosome biogenesis through its activation of  

ribosomal protein S6 kinase (RPS6K).24 It is unknown if 

impaired ribosome biogenesis also affects fetal hepatic 

erythropoiesis; however, fetal mouse liver under PAE 

exhibited reduced expression of key genes that promote 

ribosome biogenesis, including treacle ribosome biogenesis factor 

1 (Tcof).217 Given the grave repercussions of fetal anemia, the 

anemia of PAE and its potential interventions warrant a high 

priority for study. 

Conclusions 

This review has highlighted new opportunities for research into 

the mechanisms underlying alcohol’s teratogenicity, focusing on 

factors that are largely external to the conceptus yet have critical 

influences upon its development. This includes several alcohol-

related pathologies that are seldom considered within the 

framework of pregnancy. The article further emphasizes how 

“no mechanism is an island” and discusses how these areas are 

mechanistically interwoven to perhaps synergize or accelerate 

alcohol’s pathogenicity. These interrelationships are summarized 

in Figure 2. For example, alcohol-induced alterations to enteric 

microbial communities may affect nutrient availability to the 

mother and fetus and could redirect their respective immune 

systems to generate short- and long-term dysfunction. Alcohol 

and its secondary metabolites themselves have proinflammatory 

actions that are further fueled by the accompanying gut—and 

perhaps placental—permeability that permits entry of microbial 

endotoxins and DNA fragments into the bloodstream. These 

circulate within the mother, placenta, and conceptus to sustain a 

chronic inflammatory state. This chronic inflammation may also 

contribute to the fetal anemia of PAE that limits iron availability 

and could promote a fetal hypoxic state that impairs its growth and 

brain development. Fetal growth may be further limited by 

alcohol-induced metabolic insufficiencies that cannot support the 

pregnancy’s profoundly anabolic state—changes that reflect not 

only potential dietary insufficiency but alcohol’s disruption of 

macronutrient utilization. Such metabolic disruptions could alter 

availability of the one-carbon and acetyl units, and perhaps also 

the microRNAs, involved in epigenetic modifications, not only 

within the uterine environment but also in the father. 

Overall, this integrative view suggests that interventions likely 

to target foundational mechanisms with the widest range of 

influences may have the greatest efficacy. Similarly, highly focused 

interventions may have greater efficacy when provided with other 

interventions that address complementary targets. However, 

focused examinations of individual mechanisms remain critical 

because they inform an understanding of those mechanisms and 

an optimized design of interventions targeting them. 
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Figure 2. Integrative summary of nonfetal mechanisms that contribute to alcohol’s teratogenicity. In addition to its direct interactions with the 

conceptus, alcohol affects additional organs and compartments that have critical influences upon healthy fetal development. These include effects on the 

biological mother and her microbiome communities, the placenta, and the biological father. These further interact with each other, and with the conceptus, 

to produce systemic inflammation, vascular dysfunction, metabolic insufficiencies, fetal anemia, and epigenetic reprogramming. These effects, in turn, alter 

cellular signaling and metabolism to disrupt myriad processes, including cell proliferation, differentiation, migration, and survival. Boldface terms indicate 

where these nonfetal mechanisms interact. Figure generated in BioRender. 

 
The advances described here have generated outstanding 

opportunities to expand understanding of alcohol’s 

fundamental mechanisms of action. A major limitation is that 

additional mechanisms likely remain undiscovered because a 

full description of the proteins with which alcohol directly 

interacts to alter their activity is still lacking. In silico 

approaches that incorporate structural modeling plus deep 

learning algorithms such as Alpha-Fold could accelerate 

discovery of these proteins to identify novel mechanisms and 

interventions. It is also unclear which of the described 

preclinical findings are relevant for humans. In silico modeling 

of target protein structures across species would inform this 

question, as would expanded testing across taxa to identify 

mechanisms that are evolutionarily conserved. Another area  

 

of opportunity is for increased collaboration between the  

organ-specific alcohol research communities. For example, much 

is known about alcohol’s mechanisms in the nonpregnant state. 

However, these mechanisms are seldom applied to pregnancy 

even though they almost certainly operate during an alcohol-

exposed pregnancy. Similarly, mechanisms that act on the brain 

could be operational in other organs and vice versa—for example, 

as shown for the astrocytic metabolism of alcohol240 and 

neurotransmitter actions on the gut and immune system.241,242 

An additional limitation is the frequent absence of diet information 

in animal studies, even though diet has a major influence on 

outcomes involving the microbiome, inflammation, nutrient 

influences, and the interplay of epigenetics and metabolism. 

The current Animal Research: Reporting of In Vivo Experiments  
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(ARRIVE) Guidelines do not require reporting of diet 

composition or identity; such a mandate would enhance the 

reproducibility of preclinical studies. 

Because alcohol is a pleiotropic drug that interacts with 

numerous proteins to perturb cellular and physiological 

processes, it remains a significant but solvable challenge to 

isolate alcohol’s underlying mechanistic actions. This 

mechanistic understanding is crucial to the design of 

interventions that specifically target and thereby remediate 

alcohol’s upstream actions. Without this understanding, an 

intervention risks becoming a bandage that stops a subset of 

outcomes that may or may not be relevant to alcohol’s 

pathologies. This review has highlighted a subset of 

mechanisms for which there is good biological plausibility. 

Increasing attention to these can significantly advance our 

mechanistic understanding of alcohol’s teratogenicity. 
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